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(McCallum 2007; 
Collins 2010; Fisher and Garner 2020)

 

(Kraus and Petranka 
1989; Petranka 1988)

(Kraus and Petranka 1989)

(Kraus and Petranka 1989; 
Petranka and Sih 1987)

(Miller and Miller 
2019)

(Garcia 
and Sih 2003), making them also difficult to 
differentiate as larvae

(Miller and Miller 
2019)

(Klymus et al. 2017; Langlois et 
al. 2020; Xia et al. 2021)

 
 

 
 

viridescens) (KYDFW 
Permit# SC2111188). Tissue for the 
smallmouth and other sympatric species was 
generously donated by collaborators. All 
information concerning origin of species used 
in laboratory testing is found in Table 2, 
Supplemental Data. issue DNA 
using a DNeasy blood and tissue kit (Qiagen) 
according to the provided protocol.  Tissue was 
lysed overnight at 56 °C in proteinase K and 
eluted twice (400 µl total) to increase DNA 
yield. 

(Roe et al. 1985)
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Notophthalmus 
viridescens

quantified using a 
Qubit 2.0 (Life Technologies, Carlsbad, CA, 
USA) and DNA from all species diluted in 
nuclease free water to a concentration of 1.0 
µg/ml. µl reactions included: 12.5 µl 
GoTaq Master Mix (Promega, Madison, 
Wisconson, U.S.A.), 9.5 µl nuclease free 
water, 2 µl tissue extracted DNA and 2.0 µl of 
F and R primers (reaction concentration = 1.6 
µm).  Cycling conditions consisted of an initial 
denatu
followed by 40 cycles of 95.0 oC for 45 s, 57.0 
oC for 60 s, and 72.0 oC for 60 s.  

 

ater samples were 
processed through a 47mm diameter glass 
microfiber filter (VWR, 0.42mm thickness and 
0.7 m pore size) in a manner similar to 
previous studies (Eichmiller et al. 2014; Guivas 
and Brammell 2020; Jerde et al. 2011).  

 

 
 

RESULTS 
 
In silico testing.  Smallmouth salamander 

forward and reverse primers have a minimum 
of two mismatches with all species and four or 
more mismatches with all species except 
streamside salamanders (Table 2). When the 
probe is considered, six or more mismatches 
exist with all 18 potential sympatric species 
(Table 2); therefore, amplification of sympatric 
species is highly unlikely. Additionally, when 
compared to published smallmouth salamander 
sequences from other portions of the range, the 
number of mismatches in only the forward and  
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TABLE 1. Primers developed to detect smallmouth salamander (A. texanum), designed based on 
sequence from Kentucky (Butler Co.) collected A. texanum specimen ( ). Bold, 
blue bases indicate location mismatches with streamside salamander (A. barbouri) (Table 2).  

Amplicon 
length (BP) 

Oligo -  
 

147 F TCAATGAATTTGAGGCGGATTT 
 R CCTGTAGGGTTATTAGATCCTGTT 
 P ACTCGATTCTTTGCCTTCCACTTCT 

 

 
FIG. 1. Tissue extracted DNA specificity tests for smallmouth salamander (A. texanum) primers 
using

Notophthalmus viridescens µl reactions included: 12.5 µl GoTaq Master Mix 
(Promega), 9 µl nuclease free water, 2 µl tissue extracted DNA and 1.5 µl of F and R primers. 

40 60 s, 57
ladder (Bioline).  
 

 
FIG. 2. Filtered water extracted DNA reactions run with smallmouth salamander (A. texanum) 
primers. Lanes 2  5 are replicates of the adult water test and Lanes 6  9 are replicates of the 
larval water test. 25 µl reactions included: 12.5 µl GoTaq Master Mix (Promega), 6.75 µl 
nuclease free water, 3.75 µl filtered water extracted DNA and 2.0 µl of F and R primers. Cycling 
conditions consisted of 

extension for 30 s 
 



 8 

reverse primer is zero except for a published 
sequence from Texas (EF036664.1) although 
mismatches (up to two) are found in the probe 
for some of these sequences (Table 3). A 
comparison of these primers with streamside 
salamander sequences from various portions of 
its range indicate a minimum of four 
mismatches when the probe is considered, with 
the interesting exception of one A. barbouri 
sequence from Rutherford Co., TN, which had 
only one mismatch among all oligos (Table 4). 
However, 5/13 sequences do have a single 
mismatch with only the forward and reverse 
primer (Table 4). 

In vitro testing. Endpoint PCR reactions 
followed by gel electrophoresis successfully 

amplified cytochrome b from smallmouth 
salamander but not sympatric salamander 
species (Figure 1) following 40 cycles.. 
Additionally, the amplicon produced with the 
smallmouth salamander DNA migrated 
according to the expected size (147 BP, Figure 
1).  

 Diluted water 
extracted DNA from both the larvae and adult 
exposure trials produced strong bands that 
migrated according to size (Figure 2). 
Amplicons from the larval tank test were 
sequenced and produced an amplicon 100% 
similar to the complete smallmouth salamander 
cyt b sequenced in this study (Table 3, 
Supplemental Data).  

 
TABLE 2. Mismatches in smallmouth salamander (A. texanum) oligos when compared to cytb 
sequences of other salamander species. FP = forward primer, RP = reverse primer, P = probe, % 
sim. = percent similarity of the smallmouth salamander cytb sequence obtained in this project 
( ) to the sequence indicated by the accession # in the table, Symp. = the species 
does or may occur sympatrically with smallmouth salamanders, In vitro = the primers were 
screened in laboratory tissue tests with this species. 
 

Sympatric species FP 
mismatches 

RP 
mismatches 

P 
mismatches 

% 
sim. 

Seq. accession 
# 

Symp. In 
vitro 

Ambystoma texanum 0 0 0 - OM236537 - - 

Ambystoma talpoideum 4 3 3 84.2 NC_039182.1 Y Y 

Ambystoma barbouri 0 2 4 93.4 OL456142 Y Y 

Ambystoma opacum 3 2 4 85.3 KT780868.1 Y Y 

Ambystoma jeffersonianum 2 2 2 86.8 MZ962318 Y Y 

Ambystoma maculatum 5 3 3 84.1 EF036637.1 Y Y 

Ambystoma tigrinum 3 4 3 88.2 OL456143 Y Y 

Notophthalmus viridescens 2 4 5 80.6 AY691731 Y Y 

Eurycea cirrigera 3 2 2 78.1 NC_035494.1 Y N 

Eurycea lucifuga 1 3 6 79.0 KT873718.1 Y N 

Eurycea longicauda 3 3 6 77.4 AY528403.1 Y N 

Eurycea bislineata 1 4 3 78.4 AY528402 Y N 

Desmognathus monticola 5 3 3 79.6 MW319719.1 N N 

Desmognathus ochrophaeus 2 3 3 79.8 MW319718.1 N N 

Desmognathus conanti 3 5 4 79.2 KY659024.1 Y N 

Pseudotriton ruber 4 3 3 78.7 AY728220 Y N 

Pseudotriton montanus 3 4 4 77.7 KR054760.1 Y N 

Gyrinophilus porphyriticus 3 2 6 77.9 AY728230 Y N 

Hemidactylium scutatum 5 5 8 77.2 AY728231 Y N 
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DISCUSSION 
 

As anticipated, of the six sympatric 
Ambystomatid species tested, streamside 
salamanders possessed a cytochrome b 
sequence most similar to smallmouth 
salamanders. The streamside salamander cyt b 
sequence used for in vitro testing in this study 
was 93.3% similar to the smallmouth 
salamander sequence (Table 2). The 
sufficiency of two mismatches (Table 2) to 
distinguish these species is similar to that 
reported by Wilcox et al. (2013) who noted 
greatly reduced amplification of non-target 
DNA with one mismatch and nearly no 
amplification when two mismatches total were 
present in both F and R primers. Interestingly, 
the significance of the proximity of a mismatch 

enhancing specificity (Stadhouders et al. 2010; 
Whiley and Sloots 2005; Wright et al. 2014). 
The mismatches between our smallmouth 
salamander R primer and streamside 
salamander sequence (OL456142) occur at the 

the primer (24 BP total) but were still sufficient 
to produce specificity (Fig. 1). Furthermore, we 
note that the addition of the probe (Table 3, 
Supplemental Data) tested in this study in silico 
(four mismatches, Table 2) but not in vitro, 
would provide an additional level of security in 
preventing the possibility non-specific binding 
with streamside salamander DNA.  

This work underscores the importance of 
local sequences in assay validation, consistent 
with recent studies (Czechowski et al. 2021; 
Goldberg et al. 2016). 

(Kuchta et al. 
2016; Page et al. 2020; Sweet and Jockusch 
2021)

 
Although tools for monitoring all 

amphibian species have value, one of the 
primary advantages of tools enabling eDNA 
detection of smallmouth salamanders is the 
deployment of these tools in the detection of 
this fossorial species in ephemeral breeding 
ponds where they may occur with other 
Ambystomatid species and field identification 
is difficult.  

(Kraus and Petranka 1989; Petranka 
1988)

(Niemiller and Reynolds 2011)
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TABLE 3. Comparison of mismatches between smallmouth salamander oligos (including probe 
not tested in vitro) and published smallmouth salamander sequences (Bi and Bogart, 2010; 
Robertson et al., 2006). 
 

*Primer falls outside published sequence. 
 
 
TABLE 4. Comparison of mismatches between smallmouth salamander oligos (including probe 
which was not tested in vitro) and published streamside salamander sequences (Bi and Bogart, 
2010; Robertson et al., 2006).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*Primer falls outside published sequence. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

Collection locality 

Butler Co, KY 

Clarke Co., O
H 

Erie Co., O
H

 

M
ontgom

ery Co., O
H 

W
ashington Co., O

H
 

Jay Co., IN
 

Jennings Co., IN
 

W
abash Co., IN

 

M
cLennon Co., TX 

Essex Co., O
N

 

Essex Co., O
N

 

Essex Co., O
N

 

 

Gen Bank Accession Number 

O
M

236537 

G
U

078506.1 

EF036641.1 

G
U

078471 

EF036656.1 

EF036657.1 

EF036660.1 

EF036659.1 

EF036664.1 

EF036643.1 

EF036648.1 

EF036644.1 

F TCAATGAATTTGAGGCGGATTT 0 0 0 0 0 0 0 0 1 0 0 0 
R CCTGTAGGGTTATTAGATCCTGTT 0 0 0 0 0 * 0 0 3 0 0 0 
P ACTCGATTCTTTGCCTTCCACTTCT 0 1 1 1 1 2 1 1 1 1 1 1 

 

Collection locality 

M
adison Co, KY 

Jessam
ine Co., KY 

Fayette Co., KY 

Franklin Co., KY 

M
ercer Co., KY 

Anderson Co., KY 

O
ldham

 Co. KY 

H
am

ilton Co., O
H

 

W
arren Co., O

H
 

M
ontgom

ery Co., O
H

 

Butler Co., O
H

 

Rutherford Co., TN
 

Livingston Co., KY 

 

Gen Bank Accession Number 

O
L456142 

G
U

078501 

G
U

078484 

G
U

078482 

G
U

078496 

G
U

078478 

G
U

078490  

G
U

078470 

G
U

078512 

G
U

078474 

G
U

078511 

G
U

078495

G
U

078504 

F TCAATGAATTTGAGGCGGATTT 0 0 1 0 0 0 1 0 1 0 0 0 1 
R CCTGTAGGGTTATTAGATCCTGTT 2 2 2 1 1 2 0 2 1 2 2 1 * 
P ACTCGATTCTTTGCCTTCCACTTCT 4 4 4 4 3 3 3 3 4 4 3 0 4 
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Species Collection 
locality 

DNA conc.  
(µg/ml) 

A. tigrinum   
A. maculatum   
A. barbouri   
A. opacum   
A. jeffersonianum   

   
A.    
N. viridescens   

 
 
 
 
 
 
 
 

Recent works have emphasized the need 
for thorough specificity testing 
(Goldberg et al. 2016; Klymus et al. 2020; 
Loeza-Quintana et al. 2020). The assays 
presented here and tested, both in silico, in 
vitro, and in laboratory water exposure tests 
should serve as valuable tools enabling the 
detection of this widespread salamander 
species.  
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FIG. 3. (A) Range of 
smallmouth salamanders 
(courtesy of USGS and 
Ohio Amphibians.com). 
(B) Range map of 
streamside salamanders 
(courtesy of USGS and 
Ohio Amphibians.com). 
(C) Smallmouth 
salamander from central 
Indiana (photo courtesy 
of Todd Pierson). (C) 
Range map of streamside 
salamanders (courtesy of 
USGS and Ohio 
Amphibians.com). (D) 
Streamside salamander 
from southeastern 
Indiana (photo courtesy 
of Todd Pierson). 
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 Supplemental Data  
 

 
FIG. S1. Gradient reaction run to optimize annealing temperature. Template DNA consisted of 
water extracted DNA from smallmouth salamander tank tests. µl reactions included: 12.5 µl 
GoTaq Master Mix (Promega), 6.75 µl nuclease free water, 3.75 µl filtered water extracted DNA 
and 2.0 µl of F and R primers. Cycling conditions consisted of an initial denaturation stage of 

displayed is Hyper 25 BP ladder (Bioline).  
 
TABLE S1. Forward and reverse primer pairs and probe developed for smallmouth salamander. 
Probe sequence is included here but was not tested in vitro or in laboratory water exposure tests.  

Amplicon 
length 
(BP) 

Oligo -  
 

147 F TCAATGAATTTGAGGCGGATTT 
 R CCTGTAGGGTTATTAGATCCTGTT 
 P TGTAGCCCATATTTGCCGAGACGT 

 
TABLE S2. Ambystomid species and Eastern Red-Spotted Newt used in in vitro specificity test. 
All specimens were collected in Kentucky.  

Species Collection 
locality 

Cyt b 
sequenced 

Length G.B. 
accession # 

Ambystoma texanum Butler Co. Y 744 OM236537 
Ambystoma talpoideum Logan Co. N - - 

Ambystoma 
jeffersonianum 

Powell Co. Y 749 MZ962318 

Ambystoma barbouri Madison Co. Y 935 OL456142 
Ambystoma maculatum Rowan Co. N - - 

Ambystoma opacum Powell Co. Y 720 KT780868.1 
Ambystoma tigrinum Warren Co. Y 782 OM289824 

Notophthalmus 
viridescens 

Powell Co. Y 272 MZ962319 
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TABLE S3. Amplicon produced with A. texanum primers from water samples taken during the 
laboratory tanks tests. Bold blue bases represent F and R primers. 

 
 

 
 
 
 

 
  

Length  Sequence  

147 BP TCAATGAATTTGAGGCGGATTTTCAGTTGACAAAGCTA
CCTTAACTCGATTCTTTGCCTTCCACTTCTTATTTCCATTC
TTAATTGCAGGAACAAGCATTATTCATCTCCTTTTTCTTCA
CGAAACAGGATCTAATAACCCTACAGG  


